Kynetx Report

The Kynetx Rule Language
The First Internet Application Platform

Phillip J. Windley, Ph.D.
Chief Technology Officer
Kynetx

August, 2010

Kynetx

this changes everything™

The Kynetx Rule Language

Reactive Systems

You can view the
Internet is as a
big reactive
system. When
you browse,
tweet, or email,
the Internet
reacts to what
you're doing.

Linguistic
expression and
abstraction give
programmers
the tools to do
amazing things
without making
heroic efforts.

Imagine walking into Borders and having your smartphone alert you to the
fact that the book you put on your Amazon wish list this morning is
available right now and on sale. As another example, think about an
application that gathers relevant articles from your RSS and Twitter feeds
based on searches you've performed or that are related to an email you
received from a friend today.

These examples show the power that can be achieved when applications
can work across multiple domains and multiple protocols at the same time.
We think of this as “programming the Internet” and the results are much
more impressive than those achieved by building a mere Web site. There’s
no reason that clients in different domains, like your smartphone and Web
browser, shouldn’t be cooperating under your guidance to help you get
things done. But to make that happen, we need new architectures and
programming paradigms.

One way of viewing the Internet is as a big reactive system. When you
browse, tweet, email, and so on the Internet reacts to what you're doing, or
so it seems. Thus, programming the Internet requires reacting to user
activities. Existing Web programs do this in a fairly ad hoc manner because
most Web frameworks provide little support for managing program data
and control flow across individual user interactions.

This document describes a new programming language, the Kynetx Rule
Language or KRL, and the system that runs it, the Kynetx Network Service
or KNS. KRL is designed for programming the Internet and makes it easy
for developers to create applications, or apps, that behave like the scenarios
imagined above. KRL is a programming language for building reactive
systems that respond to complex scenarios across multiple Internet
protocols, domains, clients, and devices.

When we invented KRL our goal was to build notational support for the
hard things that Web programmers face everyday—especially on the client-
side. Our mantra is “let the machine take care of the details.” Linguistic
expression and abstraction give programmers the tools to do amazing
things without making heroic efforts.

Benefits of Using KRL

Kynetx

KRL is purpose-built for programming on the Internet. KNS provides a
cloud-based platform for executing KRL programs.

The following lists specific benefits provided by KRL and KNS:

* User-centric and user-controlled—Apps built using KRL are
intrinsically tied to users. The architecture of KNS is such that
rulesets are always evaluated on behalf of an entity (user). Users
control endpoints and thus the apps that they run and the events
they raise.

The Kynetx Rule Language

Kynetx

Event controlled—events provide a powerful, unifying abstraction
for building reactive systems. Developers can easily write
applications that respond to complex event scenarios.

Cross domain—Kynetx apps can work across domains so that user
purpose can be advanced regardless of online location. KRL is
designed to cross the silos that have sprung up, as stand-alone Web
applications, so developers can create applications that mash-up
data from all across the Internet regardless of location or protocol.
Cross protocol—Kynetx apps easily work across Internet protocols
such as the Web, email, and so on. KNS is easily extensible by
developers to support any protocol.

Data and context driven—KRL and KNS are designed to easily and
naturally work with the burgeoning array of data and APIs available
online. Correlated data provides context about users. Using KRL
and KNS, developers can create applications that respond to user
context for a more compelling experience.

Cloud based—because Kynetx apps are cloud based, they work
consistently and ubiquitously. They can be accessed from multiple
platforms while providing the same context, identity, and
experience. Cloud-based programming means that programs always
work because they are updated without user interaction in
response to changing conditions.

Browser independent—Kynetx apps work in all the major
browsers without modification. The browser has become a sort of
universal application platform, but browser differences make
programming on them difficult. KRL provides a unifying framework
for easily working with all of the popular browsers.

Internet app centric language and design—KRL provides a
powerful notation for creating apps that run across the Internet.
KNS provides the platform that makes that possible.

Security and privacy are built-in—the architecture of KNS is
designed to limit nefarious activity structurally. In addition,
operating in the cloud makes it easy to turn off apps that are
misbehaving. User control provides the means to create privacy
respecting apps.

Late binding—Kynetx apps run at the exact moment that the user
needs them. They bind to data and functionality that is appropriate
for the user’s current context. In contrast, conventional Web
applications exist at a single location and operate without the
benefit of user context.

Multi endpoint—KNS provides application program endpoints that
work with Web browsers, email servers, and other Internet
systems. Kynetx plans to provide endpoints for popular and
important Internet protocols and applications as part of its ongoing
development roadmap. Developers can easily extend KNS to
include endpoints for any Internet protocol.
Developer-friendly—KRL is designed to provide developers with a
powerful and easy to use abstraction layer for apps. KRL provides a
notation that lets programmers easily complete Internet
programming tasks that previously took many lines of code. Event

The Kynetx Rule Language

expressions, datasets, and data sources are just a few examples.
Because Kynetx apps are hosted, developers are spared operational
and maintenance headaches that come with servers.

A New Programming Model for the Internet

The following pages contained a brief description of the primary
components of what entails a new programming model for applications
that work across the Internet in behalf of the user—as opposed to the
typical Web program that works on a single site on behalf of the site owner.
The model and services we describe form a platform for creating Internet
applications.

In the discussion that follows we explore in some detail the primary
concepts in this new model: events and rules. We'll also briefly describe
the architecture of the system of services that support this model. The
document ends with three examples showing applications built to take
advantage of this model.

Events and Rules

We call the activities like viewing a Web page, sending an email, or arriving
at a new location an event. Events are one of the key concepts in KRL.

KRL programs react to events.

Complicated
event scenarios
are not
uncommon in
Web
applications.
KRL makes
responding to
them easy.

Kynetx

An event is a notification of an activity that happened at a particular time
with specific attributes. We call a meaningful, related group of events an
event scenario.

In the bookstore scenario I describe above, the events are

1. User updates Amazon wishlist
2. User arrives at bookstore

To notify the user that their book is available nearby, an application would
have to take note of these events and, when they have been satisfied in the
given order, take an action that sends the notification.

Scenarios like this are not unusual in Web applications. Surprisingly the
most common way to deal with them programmatically is to build ad hoc
logic that recognizes the event scenario and dispatches procedures to
handle each scenario..

We'll discuss what kind of events KRL recognizes and what operators are
available for describing complicated event scenarios in a later section.

The Kynetx Rule Language

KRL programs are made up of rules.

Rules have three
main parts: the
event selector,
the condition,
and the action.
KRL programs
are collections of
rules.

KRL programs, or rulesets, comprise a number of rules that respond to
events. The basic pattern for a rule in KRL is

when an event occurs
if some condition is true
then take some action

This pattern is not unique to KRL, many rule languages are event-condition-
action, or ECA, rule languages. The ECA pattern is typical of most business
rule systems and rule languages based on that pattern are a widely
accepted way to build reactive systems.

Rule languages have been heavily used in planning and reasoning systems,
including expert systems and natural language processing. KRL is not a
planning or reasoning system. Rather, KRL is a programming language for
creating complete Internet applications.

The following shows a simple KRL rule.

rule morning 1is active {
select when pageview “/archives/”
if morning() then
notify(“welcome!”, “Good morning!”)

}

This rule would send a “good morning” notification to visitors of any page
in the archives of a Web site (as denoted by the URL path) if its morning
where the user is.

In the rule shown, the event expression is denoted by the keyword select,
the condition by the expression following the keyword i f, and the action by
the notify action following the keyword then. The rule has a name:
morning.

The rule morning is selected when the scenario given in the event
expression is true (i.e. when there is a Web pageview event with a URL that
matches the path expression given, “/archives/”). Once a rule is
selected, the condition is tested. If the condition is true, then the action is
taken and we say that the rule fired. Note that for a rule to fire, it has to be
selected and the condition has to be true.

In addition to the basic rule syntax shown above, rules can have preludes
where variables are declared and postludes where rule effects are
computed. These, and other KRL features are described in a later section.

Event Loops and Endpoints

Kynetx

The Kynetx Network Service (KNS) is made up of endpoints and the Kynetx
Rules Engine, or KRE. KRE uses rulesets to define the interactions it has
with endpoints. The following diagram illustrates that relationship:

The Kynetx Rule Language

Endpoints

Endpoints raise
events on behalf
of a user and
respond to
directives from
rulesets when
they’re
evaluated.

Kynetx

e ™
r KRE S
. —> KRL
== — =
aevent loops
Kynetx Network Service y

From the standpoint of an endpoint or group of endpoints operating on
behalf of a user, the diagram can be abstracted to be simpler. The endpoint
raises events with an event loop running in the cloud and receives
directives in reply. The particular event loop that the endpoint interacts
with is defined by the ruleset executing on behalf of the user.

event
(181) : — > Kynetx
A/ endpoint - event loop
directive

KNS is built so that developers can define their own endpoints and the
event domains they manage, but most developers will use pre-built
endpoints that Kynetx supplies. At present Kynetx offers Web endpoints in
the form of browser extensions for popular browsers and an IMAP
endpoint?.

Endpoints raise events and respond to action requests on behalf of a user
or, more generally, an entity. Raising the correct event requires that the
endpoint be aware of the entity it represents, what rulesets, or apps, the
entity deems important, and which events those rulesets want to see
(called event salience). Endpoints generally operate for one event domain.

Endpoints raise events using the Kynetx event API2. The event API is
implemented as an HTTP service. Using the API, an endpoint can construct
a service call that contains relevant information about the event and the
rulesets that should be run against that event.

Endpoints process directives. Often these directives are Javascript
programs, but may be JSON data structures or other information
appropriate to the endpoint. The endpoint is responsible for interpreting
any directive it receives.

For example, a browser extension serving as a Kynetx endpoint would raise
the appropriate events for the web domain including pageview, submit,
and so on. The browser extension also responds to directives from the
Kynetx event loop—the most important being to execute the returned
Javascript in the context of the page.

The Kynetx Rule Language

Event Loops

KNSisa
collection of
programmable
event loops that
run in the cloud
on behalf of a
user.

As another example, an email endpoint would raise events for the email
domain, including received, sent, etc. and respond to the directives that
might include actions like deTete, forward, and so on.

The Kynetx Rule Engine, or KRE, is the primary service provider in KNS.
KRE interacts with endpoints and executes KRL programs. KRE can be
envisioned as a system of event loops that run in the cloud. An event loop is
a message dispatcher. The loop runs, waiting for events, and responding to
them. KRE is extremely flexible, allowing developers to invent their own
event types and then write KRL programs that respond to those events with
free form directives.

As we will discuss in detail in the next section, event expressions in KRL can
be designed to respond to complex event scenarios. KRL includes a set of
event operators for combining event primitives into event expressions.

KRE responds to event API calls by executing the appropriate rulesets
against the event that has been raised. Each rule in the ruleset is examined
to determine whether or not it should be selected for the event and, if
selected, executed. The result of a ruleset execution is usually a set of
directives that are returned to the endpoint3.

Event Expressions

Event expressions play such a critical role in understanding the operation
of KRL. There are two types of event expressions:

* primitive events —-comprise the specific event types in a given
event domain.

* compound events -combine primitive events using event
constructors such as then or between.

Primitive Events

Kynetx

As we've mentioned, a rule is selected when the rule’s event expression is
satisfied. For primitive events, that means that the event is raised and the
conditions around that event have been met. The syntax for a select
statement with a single primitive event# looks like this:

select when <event_domain>? <event_type>

{<param_name> <regexp>}*

[setting (<var>*)]
The event domain is a namespace within which events are raised.
Endpoints are responsible for setting the event domain when they raise the
event. Kynetx provides endpoints for the Web and email that raise events
in the event domains web and email respectively. If the event domain is
missing, it defaults to web.

The event type gives the specific event name for the event within a specific
event domain. For the event domain web the following event types are
currently defined:

The Kynetx Rule Language

Primitive events
are the basic
building block of
KRL event
expressions.
Primitive events
are specific to an
endpoint type.

* pageview -user viewed a Web page

* submit -user submitted a form

* click -user clicked on a page element
* change -user changed a form element

The event types and what they mean are defined by the endpoint5. Other
event domains have their own relevant event typesé. For example, the
Kynetx email endpoint defines the following event types:

e received—email received
* sent—email sent

Event parameters can be sent when an event is raised. A primitive event
expression need not test all (or, in fact, any) of the event parameters that
are submitted.

The setting clause allows variables to be set from captured portions of the
regular expressions’ in the event parameter tests.

A primitive event expression is only satisfied when the event domain and
event type match exactly and any named event parameter matches the
associated regular expression.

Event Expression Examples

As an example consider the following select statement from a KRL rule:
select when mail received

In this event expression, mail is the event domain and received is the
event type. Any rule containing this statement will be selected when events
matching the event domain and type are raised. Of course event
expressions can be more complicated:

select when mail received from "(.*)@windley.com"
setting(user_id)

This statement adds a parameter to test (from) and regular expression
("C.*)@windTey.com") along with a setting clause to name the captured
variable. You can have as many parameter checks as needed. The select
statement shown above will only be satisfied when the event domain and
type both match and there is a parameter called from that has a value that
matches the given regular expression. The endpoint is responsible for
setting event parameters when it raises the event.

Compound Events

Kynetx

A good event language adds considerable power to rules. Compound event
expressions allow us to combine primitive events8 to form event scenarios?®.
Event expressions provide a robust notation for developers to express the
situations in which their rules should be selected. By combining primitive
events into event scenarios, developers can create sophisticated
applications without requiring that they manage the state machine
necessary to recognize those scenarios.

The following event operators are available:

A before B -eventA occurred before event B:

The Kynetx Rule Language

select when pageview "bar.html"
before pageview "/archives/(\d+)/x.html"
setting (year)
A then B -event A occurred then event B occurred with no intervening
salient events
select when pageview "bar.html"
then pageview "/archives/(\d+)/foo.html"
setting (year)
A and B -event A occurred and event B occurred in any order.
select when pageview "bar.html"
and pageview "/archives/\d+/foo.html"
Compound event A or B-eventA occurred or event B occurred.

expressions select when pageview "bar.html"

allow developers or pageview "/archives/(\d+)/foo.htm1"
to succinctly A between(B, C) -eventA occurred between event B and event C
specify select when pageview "mid.html"

complicated between(pageview "firs(.).html1" setting(b),
scenarios in pageview "las(.).html" setting(c))

their rulesets. not between(B, C) - eventA did not occur between event B and event

O >

select when pageview "mid.html1"
not between(pageview "firs(.).htm1" setting(b),
pageview "Tas(.).html" setting(c))
Of course, these can be nested as well. Parentheses specify execution order
where precedent is not apparent

select
when pageview "mid.html"
between(pageview "firs(.).html" setting(b),
pageview "las(.).html" setting(c))
before pageview "/archives/(\d+)/foo.html1"
setting (year)

Other event expressions operators will be added as needed?0. There’s no
restriction that requires all of the primitive events in a particular scenario
coming from a single event domain. In fact, the most interesting event
scenarios will employ multiple event domains.

Conditions and Actions
As we've seen, rules have more to them than just events—they need to

conditionally respond to those events.

Conditions

Rules don’t always fire when they are selected. Often, we want other factors
to influence the outcome of a ruleset execution. We refer to the information

Kynetx 9

The Kynetx Rule Language

Conditions allow
rules to take
user context into
account and give
KRL the power
to respond to
individual user’s
circumstances.

Actions

Actions are the
heart of any rule.
Rules can take
multiple actions.

surrounding a ruleset’s execution as context!l. Much of that context is
specific to a particular user. Context includes event parameters, persistent
data stored by KNS about the entity or application, and data from other
network APIs and services such as Twitter, Facebook, Google GData,
Microsoft ODATA, Amazon, and so on.

Responding to context in ruleset execution requires testing that context.
KRL includes a full-featured expression language that can be used to gather
and manipulate data, compute new values, and create predicates for use in
conditional rules. The KRL expression language includes primitive literals,
compound data structures, standard arithmetic and string operators,
conditional expressions, and first-class functions (including closures).

The heart of any rule is the action that it takes. As we’ve mentioned actions
are endpoint specific. A given rule can take multiple, or compound, actions.
Compound actions can execute all of their actions, or just one at random (to
enable A/B testing using KRL rules).

Because of its roots, KRL has a large number of built-in actions for the web
domain!2. Common actions in the web domain include:

* notify—place a notification box on the page with a message of the
user’s choice. Many rulesets use this for giving the user simple
messages.

* annotate_search_results—annotate a list on a Web page (it
doesn’t have to actually be a search result, although that’s the most
common use case). Any item in the list that meets a developer
specified criterion is annotated—usually with a picture. AAA of
Washington used this to show AAA users where they get discounts
in search results.

* sidetab—place a slideout tray on the side of the page. When the
user selects the sidetab, the tray slides out to reveal the information
the developer wishes to show. 7Bound used this to show
conference goers an agenda and information about speakers.

Actions that are built-into KRL are designed to work across multiple Web
sites and browsers. So, for example, the AAA search annotation mentioned
above works in all the popular browsers and on all popular search engines.

KRL Structure and Features

Kynetx

A KRL ruleset is the primary unit of evaluation. A ruleset is a sequence of
rules. These rules are, by default, executed in order when the ruleset is
executed, although there are ways for developers to influence execution
order. In addition to a sequence of rules, rulesets also contain other
information necessary for the execution of the ruleset including meta data
and global declaration sections (described below).

In addition to the basic attributes of rules discussed in the previous section,
KRL has a number of important features that add to its power.

10

The Kynetx Rule Language

Preludes

Postludes

Foreach

Data

Kynetx

Rules have preludes (denoted by the pre keyword) where values are
computed before the condition is tested. The prelude contains a list of
variable declarations that are executed in order and affect the rule
environment (i.e. those declarations are valid within the scope of the
current rule). The right hand side of the declaration can be any valid KRL
expression.

Rules can also have postludes (denoted by the keywords fired, notfired,
or always) that are used to initiate effects that will last after the rule has
finished executing. The following types of effects are possible:

* explicit events—raise an explicit event to potentially fire
additional rules in the current or another ruleset.

* ruleset control flow—stop ruleset execution after this rule

* persistent variables—store values that can be used to alter the
behavior of future rule executions.

* explicit logging—store data in the logs for analysis.

Nested foreach statements are allowed immediately after the select
statement of any rule. For each iteration of the loop, the entire rule body is
executed oncel3.

Thus, any given rule can be thought of as a FLWOR!4 (foreach, let, where,
order by, result) statement. The rule prelude functions in the capacity of a
“let,” the rule premise (condition on the action) functions in the capacity of
a “where,” and the rule action itself is the “result.” Sorting the array that
the foreach iterates over does ordering.

Data is critical to making interesting rulesets. KRL is designed to be a
programming language for the Internet and thus has built-in features for
linking to data all over the Web:

* datasets—datasets from any source can be referenced. The data in
the data set is automatically cached and made available to the
endpoint. This is particularly important for browser extensions
where cross-site scripting concerns limit the ability of Javascript to
gather data from domains other than the one where the script
originated.

* datasources—datasources are KRL’s general integration to APIs.
Any URL can be used in a datasource. The rule can query the
datasource using any context data available at the time of execution.
KNS automatically caches data under programmer control.

* intrinsic data— KRL has over a dozen libraries!5 that intrinsically
integrate APIs and information from around the Internet as well as
general facilities for making API calls over HTTP. For APIs that
require it, such as the Twitter API, KRL integrates OAuth so that

11

The Kynetx Rule Language

developers don’t have to manage the OAuth protocol interaction by
themselves.

Little Languages

Meta Data

KRL makes use of a number of embedded little languages to add power to
the overall language and ease the programmer’s job:

* regular expressions—regular expressions are used in KRL for
checking event parameters, matching, replacing, and testing
variables.

* JSONPath—]SONPath is the JSON analog of XPath for XML.
JSONPath provides a convenient language for traversing and
manipulating JSON, one of the most popular data formats on the
Internet and the default data format in KRL.

* jQuery selectors—selectors allow portions of an HTML document
to be selected and manipulated. They are used widely in KRL for
working with HTML pages and data.

Rulesets can have meta data such as a name, description, and author
declared in their meta data section (denoted by the meta keyword). In
addition, the meta data section of the ruleset contains keys needed for API
access (OAuth consumer keys, AWS developer keys, and so on). The meta
data section is where outside resources (such as CSS and Javascript
libraries) are declared.

Global Declarations

Every ruleset can have a global section (denoted by the gTobal keyword)
for declarations that are common to all of the rules in the ruleset. For
example, data sources might be declared for query in later rules or
functions might be declared for use in abstracting common functionality for
several rules.

Example: Using Twitter Data

Using OAuth and
other authorization
protocols, Kynetx
apps can be
personalized in a
permissioned way.

Kynetx

KRL has built-in primitives for using Twitter. Because an app that uses
Twitter will use OAuth to obtain delegated authority to use the user’s
Twitter feed, a user will see significantly different behavior from such an
app than their friend might; an app that uses the Twitter library will use my
Twitter data when I run it and your Twitter data when you run it. Using
OAuth and other authorization technologies, Kynetx apps can be
personalized.

This example demonstrates the use of Twitter data inside a Kynetx app by
KRL. Using Twitter data inside a KRL app generally involves two KRL
patterns: authorize then use and initialize then populate.

In the authorize then use pattern, a rule is put in place to check if the app
is authorized to take a certain action and, if not, do what is necessary to
initiate the authorization ceremony. What makes this work is using the rule

12

The Kynetx Rule Language

Kynetx

postlude to ensure that the rest of the rules (which presumably rely on the
authorization) don’t run. Here’s an example:

rule auth is active {
select using ".*" setting (O
if(not twitter:authorized()) then
twitter:authorize()
with opacity=1.0 and
sticky = true

fired {
Tast
h
h

Notice that this rule only fires if the predicate twitter:authorized() is
false. The action, twitter:authorize(), is what initiates the OAuth
ceremony. The action will pop up a notification in the user’s browser that
looks like this:

Authorize Twitter Access x

The application TwitterOAuth (a16x42) from
Phil Windley is requesting that you
authorize Twitter to share your Twitter
information with it.

Description:A test ruleset
for using OAuth and Twitter
in KRL

The application will not have to your
login credentials at Twitter. If you click
"Take me to Twitter" below, you will taken

to Twitter and asked to authorize this
application. You can cancel at that point or
now by clicking "No Thanks" below. Note: if
you cancel, this application may not work
properly. After you have authorized this
application, you will be redirected back to
this page.

Take me to Twitter

No Thanks!

Note: for all the rules in the examples in this paper that are selected by web
pageviews, I've made the URL pattern as general as possible (.*). In a real
ruleset, these would likely be much more restrictive.

The postlude of the rule (inside fired {...})runsthe Tast statement if
the rule fires to ensure that nothing else happens. Of course, if the app is
authorized, the rule doesn’t fire, the OAuth ceremony is not initiated, the
Tast statement is never executed, and the remaining rules in the ruleset
are evaluated.

The initialize then populate pattern is important any time you're working
with complex data. With complex data, you will frequently need to do
something for each component of an array. That's what the foreach
statement does as part of the rule selector: executes a rule once for each
member of an array.

13

The Kynetx Rule Language

Because KRL is a
rule language, it
has patterns and
idioms that
differ from
languages like
Java or C.
Learning new
patterns helps
programmers
get up to speed
quickly.

Kynetx

The problem is that if we use a foreach to loop over the tweets in the array
and use notify to place them on the page, we’ll end up with one
notification box for each tweet...not very pretty.

A better solution is to use a rule to place the notification box (the initializer)
and another rule to loop over the tweets and place them in the notification
box (the populater).

Here’s the initialization rule:

rule init_tweetdom is active {
select using ".*" setting (O
pre {
init_div = <<
<div id="tweet_list">
</div>
>>
3
notify("Friends Tweets", init_div)
with sticky=true and
opacity = 1.0
3

This simple rule places an empty notification box on the page.

The real work is done by the populating rule:

rule populate_tweetdom is active {
select using ".*" setting (O

foreach tweets setting (tweet)

pre {
text =
div =

3

append("#tweet_1list", div)

tweet.pick("$..text");
"<div>#{text}</div>";

}

This rule loops over the tweets using foreach, grabs data out of them using
the pick operator and a JSONPath expression, and appends the result to
the div called #tweet_11 st in the notification box.

The tweets variable was set in the global block:

tweets =
twitter:authorized() =>
twitter:friends_timeline({"count":

| [

After you've gone through the OAuth ceremony at Twitter, wherever you
run this app, you will see a box that contains the last seven tweets from
your friends timeline on Twitter. Here is an example:

71

14

The Kynetx Rule Language

Friends Tweets x
Great conversations at JBoss Munich User
Group last night; back home now after
another day of meetings.

Conan quitting "The Tonight Show', good
on ya Conan. "Just isn't The Tonight Show
when its at 12:05" - http://bit.ly/5fd8G8
"Have a great day and, for the record, I am
truly sorry about my hair; it's always been
that way." http://r2.ly/quye

@jsnell WHOA. DTPFAIL

Lots of Henefer folks are now out of work.
Kandid Kiddies' photo lab was there. They
found out yesterday the company was
done. KSL News at 5

RT @Pistachio: Yes! With kids S&Z in tow!
RT @DanB Tonight: #masstic Tech Tuesday
at MS NERD in Cambridge. I will be there,
will you?

lots -and I mean lots- of late nights, the
reward is comments like this RT
@scotthuber: Outstanding new app in
@plancast brilliant idea.

The ability to personalize apps by appealing to personal data elsewhere on
the Web is an important feature in KRL.

Example: Remembering User Input and Explicit Events

Entity variables
allow KRL
programs to use
data across
ruleset
invocations.
Explicit events
allow rule
chaining inside
and between
rulesets.

Kynetx

this changes everything ™

This example shows how to gather, remember, and use user-supplied data.
The pattern also uses explicit events to fire additional rules in response to
user actions.

The basic idea is to store the data in an entity variable. Trails (a type of
persistent variable) are the most appropriate type of entity variable to use.
The ruleset pattern has four rules: initialize, send the form, process the
form, use the data. The actual ruleset has five because I added one to delete
the user data since it makes testing much more convenient. I'll go over each
rule in order.

Forget: The first rule clears the entity variable ent:name when you visit a
particular web page. You could, of course, do this under user control with a
form submission or something, but this method is simple and suits our
purpose.

rule clear_name is active {
select when web pageview "www.foobar.com"
noop(Q);
always {
clear ent:name;
Tast
3
h

Note that if the rule is selected (the page URL matches) then the entity
variable is cleared and this is the last rule executed in this ruleset.

15

The Kynetx Rule Language

Initialize: I prefer to initialize the area of the page I'm going to write or
modify and then do the modification in later rules since I can have different
rules do different things to the area as needed. Consequently, the
initialization rule just puts up an empty notification box with a div named
#my_div that we’ll use in later rules.

rule initialize is active {
select when pageview ".*"
pre {
blank_div = <<
<div id="my_div">
</div>
>>;
}
notify("Hello Example", blank_div)
with sticky=true;
}
Send the Form: This rule puts the form into the div we initialized in the
last rule if the entity variable ent: name is not empty. The rule also sets a
watcher on that form so that an event is raised when the user submits it. If
this rule fires (i.e. the rule is selected and the condition is true) then this
will be the last rule executed in this ruleset since we just want to send the
form.

rule set_form is active {
select when pageview ".*"
pre {
a_form = <<
<form id="my_form" onsubmit="return false">
<input type="text" name="first"/>
<input type="text" name="Tlast"/>
<input type="submit" value="Submit" />
</form>
>>
3
if(not seen in ent:name) then {
append("#my_div", a_form);
watch("#my_form", "submit');

h
fired {
Tast;
h
h

Whenever this rule fires, you get a notification box that looks like this:

Kynetx 16

The Kynetx Rule Language

kynetx

Hello Example

S o

eStore
CS eStore

, Related Links

Process the form: We need a rule to process the form. This rule is selected
when the form is submitted. The rule doesn’t have an action (i.e. the action
is noop). All the real work is done in the postlude where we store the name
in the entity variable ent:name and then raise an explicit event that will
cause another rule to be selected.

rule respond_submit is active {
select when web submit "#my_form"
pre {
first = page:param("first");
Tast = page:param("last");

h

noop(Q);

fired {
mark ent:name with first + " " + Tlast;
raise explicit event got_name

h

}

Use the data: The final rule uses the data in the entity variable to put the
user’s name in the div we placed in the initialization rule. This rule has two
selection conditions. It can be selected on a pageview like the other rules or
when an explicit event named got_name is raised. Remember that the
previous rule raises that event in the postlude.

rule replace_with_name is active {
select when explicit got_name
or web pageview ".*"

pre {
hame = current ent:name;
}
replace_inner("#my_div", "Hello #{namel}");

}

The action replaces the contents of the div having the ID #my_div with a
hello message that includes the name. When this rule fires, the notification
box looks like this:

17

The Kynetx Rule Language

Hello Example
Hello Phil Windley

STYLES SITE MAP FEEDBACK

eStore
CS eStore

Related Links

Whenever this ruleset is evaluated in the future the user will not see the
form but simply see this box because the system remembers the name in
the entity variable and has no need to ask for it again. If the data gets
cleared, then the user is prompted to submit the form again.

This ruleset demonstrates the use of explicit events. If we don’t raise the
explicit event got_name in the rule respond_submit, nothing will replace
the contents of the notification box to show the user that the form
submission was successful. We could have done it in that rule, but then
we’d have two rules replacing the contents with a message and if the
message changed we’d have to make sure we changed it in two places. This
technique allows us to have one rule responsible for putting the hello
message in the div. We just select it under two different circumstances.

Example: An Echo Endpoint

KNS is extensible
so the developers
can create their
own endpoints
and events to go
with them. This
flexibility makes
KNS the first
Internet
application
platform.

Lo :
Changes everything

As we have mentioned, KNS allows developers to create their own
endpoints and define event domains, event types, and directives for that
endpoint. While most developers use the pre-built endpoints and pre-
defined domains (e.g. web and emai1), seeing how endpoints and KRE
interact is instructive. This example shows the creation of a simple
endpoint and a ruleset to interact with it.

In this example, the developer’s job is to

1. invent the events that the endpoint will raise

2. design the directives that the endpoint will respond to
3. create an endpoint that does these things

4. write rulesets that the endpoint uses.

Defining events that an endpoint can raise and directives that it can
consume is similar to creating a protocol. The quintessential introductory
example for a protocol is an echo server. For this example, we will define a
simple event domain, echo, and two event types, hel10 and message.

Of course, defining the events is only half of the game. We need to respond
to them. The send_directive action provides a general way for
developers to send structured information (JSON) to an endpoint.

For example the following action will send a directive named say with a
parameter named something that has the value “HeTlo world”.

send_directive("say") with

18

The Kynetx Rule Language

Kynetx

something = "Hello world";

A ruleset may send zero or more directives to the endpoint as the result of a
single event being raised. The endpoint can interpret them any way it
wants.

In our ruleset, we’'ll define two rules: one for each event type given above.
We could, or course, have more if we want to respond to different
parameters.

rule hello_world is active {
select when echo hello
send_directive("say") with
something = "Hello world";

rule echo is active {
select when echo message input "(.*)" setting(msg)
send_directive("say") with
something = msg;
}
The rule hello_world responds to the helTo event by sending the
directive named say with the parameter something setto “Hello
world”.

The rule echo responds to an echo event with a parameter called input.
That entire value of the input is captured and bound to the variable msg.
The echo rule sends a directive named say with the parameter something
set to the value of msg.

It's critical to note that the underlying Kynetx rules engine doesn’t know
anything about the event domain echo or the event types hel1o and
message. We could define these to be anything we wanted and the example
would work the same.

This ruleset, with its understanding of the echo events and directives, is
useless without a corresponding endpoint to raise these events and
consume the directives. Appendix A contains a Perl program that functions
as a simple endpoint for this event domain.

The program has the possibility of taking the event type from the command
line with the -e switch. If none is given, the event type defaults to helTo.
Consequently running this program with no arguments results in the
hello_world rule firing and the directive say “Hello World” being sent
to the program that prints the message.

Running the program with the -e switch like so:
./echo.pl -e message -m 'KRL programs the Internet!'

results in the string “KRL programs the Internet!” beingechoed to
the terminal.

19

The Kynetx Rule Language

Try Out KRL

Summary

Lexicon

Kynetx

You can try out KRL for free by creating an account at Kynetx16. Free
Kynetx accounts can develop multiple applications and run them for non-
commercial use. Inquires about partnerships and VAR sales should be
directed to the email in the contact information at the end of this paper.

The Kynetx Rule Language provides a powerful notation for programming
the Internet. The Kynetx Network Service provides a platform that brings
that notation to life and makes it actionable. Together they give developers
the means to create applications that span multiple protocols, domains, and
systems and create entirely new kinds of applications. These apps take into
account user context and other data available on the Internet.

KRL and KNS have events built-in. They are flexible enough to respond to
any Internet protocol or domain. KNS is the first Internet application
platform—a system for programming the Internet.

action - the effects that a rule has on the calling page are called actions.
A rule may have more than one action. Depending on the structure of the
compound action, all of the actions or one chosen at random may be
taken.

condition- the predicate phrase that is evaluated to determine whether
the rule fires. When a rule fires, the consequent, containing actions, is
evaluated. The condition may be empty. In that case the rule always fires
when it is selected.

consequent - the statement of the effect a rule will take.
A consequent is made up of one or more actions. When the consequent is
evaluated, directives are sent to the endpoint.

context -the information surrounding and influencing ruleset execution.
Much context is user specific.

endpoint - the software or device that is responsible for raising salient
events to KNS and mediating the interaction with the client including
responding to KNS directives to the client

event — notification of an activity that took place at a particular time with
specific attributes. Usually endpoints raise events, although some rules
may raise explicit events in order to elicit further action from KNS.

event scenario — a meaningful group of events.

20

The Kynetx Rule Language

Kynetx

fire - a selected rule is evaluated to determine if the predicate in
its condition is true. If it is, the rule is said to have "fired." When a rule
fires, its actions are evaluated.

rule - a unit of computation in KRL. A rule says what actions should be
taken when the rule is selected and its condition is true. Each rule has a rule
name that should be unique within the ruleset.

ruleset—a collection of rules in KRL. Rulesets also have meta data and
global declarations. Rulesets are uniquely identified by ruleset ID, or RID.

ruleset evaluation - (also RSE). KNS evaluates rulesets in response to
events raised by the endpoint. When an event is raised, the event
expression in the select statement for each rule in the ruleset is evaluated.
When the event expression is met, the rule is scheduled for evaluation. For
each active rule selected by a satisfied event expression, the rule condition
is evaluated and if true, the rule is fired. For billing purposes, a ruleset is
only considered to have been evaluated when one or more rules in the
ruleset fire (called a BRSE).

ruleset id—also RID, the ruleset ID is the unique identifier for a ruleset.

salience -events are only raised by and endpoint if they are meaningful to
the rulesets that the endpoint is tracking.

selected - Each rule contains a selector statement that contains an event
expression. When the event expression is met or satisfied, the rule we say
that the rule has been “selected.” The selected rules are typically a small
subset of the total number of rules in the ruleset. Selected rules are
scheduled for further evaluation. See fire and ruleset evaluation.

21

The Kynetx Rule Language

Appendix A: A Perl Endpoint

Kynetx

This Perl program functions as a simple endpoint for this event domain
shown in the echo example:

#!/usr/bin/perl -w
use strict;

use Getopt::Std;
use LWP::Simple;
use JSON::XS;

use Kynetx::Raise;

global options

use vars qw/ %opt /;

my $opt_string = 'h?e:m:';

getopts("$opt_string", \%opt); # or &usage();

my $event_type = $opt{'e'} || 'hello';

my $message = $Sopt{'m'} || '';

my $event = Kynetx::Raise->new('echo',
$event_type,
'al6x66"',
{"host' => '127.0.0.1"}
);

my $response = $event->raise({'input' => $message});

foreach my $d (@{$response->{'directives'}}) {
if ($d->{'name'} eq 'say') {
print $d->{'options'}->{'something'}, "\n";
3
3

This simple script uses a module called Kynetx: : Raise that takes the
relevant information about the event, create the right URL for the Kynetx
event AP], raises the event by calling the URL and processes the response.

22

The Kynetx Rule Language

Contact Information

Kynetx, Inc.

World Headquarters
3098 Executive Parkway
Suite 325

Lehi, UT 84043

(801) 649-4601
www.kynetx.com

Trademarks used in this document are the property of the respective owners.

Kynetx

23

The Kynetx Rule Language

Endnotes

1 Kynetx anticipates building endpoints for many standard Internet systems and protocols. Our
product roadmap for the next 6 months includes mobile endpoints.

2 See the Event API documentation: (http://docs.kynetx.com/kns/kynetx-network-services-
kns/#Event)

3 At present, directives can only be sent to the endpoint that raised the event. Future versions of
KNS will allow directives to be sent to all of the endpoints cooperating on behalf of an entity.

4 For clarity, [have ignored compound event expressions in this syntax.

5 In the case of the Web, the endpoint is a combination of the browser extension, the browser, and
a Javascript runtime library supplied by Kynetx. Browser extensions and proxies initialize the
endpoint by loading that runtime library. This shows the power of endpoints that understand
Javascript: by updating the runtime library we update the functionality of every endpoint that
uses it.

6 For historical reasons, event expressions for the web domain have a slightly different syntax than
what is shown above. See the KRL documentation for more details
(http://docs.kynetx.com/krl/report-on-krl/rules/#Rule_Selection)

7 For more information on regular expressions, see...

8 Much research on event expressions was done in the area of active databases in the 90’s. The
ideas developed for specifying and implementing complex event expressions in databases serve
nicely for the kinds of things we do in KRL. A bibliography of this research is available upon
request.

9 You might be wondering how we can efficiently compute compound event scenarios. The key is
that event expressions are actually no more powerful than regular expressions over the alphabet
of primitive events. We compile each event expression into a corresponding state machine as
part of the ruleset optimization process. Then we simply keep a state marker for each rule in
each ruleset that each user has installed. The storage requirements aren’t that great and reacting
to an event only requires looking at the user’s current state for a rule and calculating the next
state. If the state machine is in a final state the rule is selected and the state machine reset. The
exact details of how event expressions are compiled to state machines are left as an exercise for
the reader.

10 [n particular, we anticipate the need for compound event operators that enable temporal
comparisons such as “event A occurred within 5 days of event B happening” or “event A
happened on Tuesday before 5pm” and so on.

11 See the Kynetx Report “Context Automation” for a more detailed discussion of context.

12 A full list of the actions available for the Web are given in the KRL documentation
(http://docs.kynetx.com/krl/kynetx-rule-language-documentation/actions/)

13 KRE optimizes rules so that only the parts of the body that depend on the value set by the loop
are repeated. Portions of the rule body that are not dependent on that value are automatically
moved outside the loop for efficiency.

14 More information on FLWOR (pronounced “flower”) statements can be found on Wikipedia
(http://en.wikipedia.org/wiki/FLWOR)

15 For more information about KRL libraries see the documentation
(http://docs.kynetx.com/krl/report-on-krl/libraries/)

16 See http://www.kynetx.com/signup

Kynetx y

